平方根和算术平方根的区别(怎样判断平方根和算术平方根)
平方根与算术平方根的定义十分相近,联系紧密,很容易混淆。为正确理解和区分这两个概念,现将它们的区别与联系总结如下:
区 别:
1、定义不同
平方根:如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,也就是说,若x²= a,则x叫做a的平方根。
算术平方根:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、表示方法不同
平方根:一个非负数a的平方根记做±√a。例如4的平方根记做±2。
算术平方根:一个非负数a的算术平方根记做√a。例如4的算术平方根记做2。
3、个数不同
平方根:一个正数有两个平方根,它们互为相反数,例如4的平方根有两个,一个是2,另一个是﹣2。
算术平方根:一个正数的算术平方根只有一个,且这个数是正数。例如4的算术平方根是2。
联 系:
1、二者之间存在从属关系。一个正数的平方根包含了这个正数的算术平方根,算术平方根是平方根中的其中一个。
2、二者被开方数的取值范围相同(都是非负数)。
只有非负数才有平方根,负数没有平方根。
只有非负数才有算术平方根,负数没有算术平方根。
一个数没有平方根,它一定也没有算术平方根。